
TEST DATA SOLUTIONS FOR ARTIFICIAL
INTELLIGENCE AND MACHINE LEARNING
APPLICATIONS

Artificial Intelligence and Machine Learning are two of the hottest buzzwords in the field of
Information Technology. Artificial Intelligence is the broader term and is defined by Investopedia
this way:

Artificial intelligence is a term for simulated intelligence in machines. These machines are
programmed to “think” like a human and mimic the way a person acts. The ideal characteristic
of artificial intelligence is its ability to rationalize and take actions that have the best chance of
achieving a specific goal, although the term can be applied to any machine that exhibits traits
associated with a human mind, such as learning and solving problems.

Artificial Intelligence (AI) is behind the growing popularity of the Virtual Digital Assistant (VDA) as
popularized by Google Home, Siri, Cortana and Alexa and used by consumers to answer questions
and automate everyday tasks. Business are increasingly using VDAs for sales, marketing and
customer service applications as well.

For example, Bank of America’s Erica serviced 3.5 million users and 11 million transactions within
three months of its launch, helping banking customers to check their account balances, monitor
transactions, access account numbers and check credit scores. Allstate’s VDA, referred to as Abie,
helps agents to quote business insurance products quickly and accurately, while reducing call
center traffic and providing instant answers to policy questions during the quotation process.

According to market research firm Tractica, active consumer VDA users will grow from 390 million
in 2015 to 1.8 billion worldwide by the end of 2021.

During the same period, active enterprise VDA users will rise from 155 million in 2015 to 843 million
by 2021.

The market intelligence firm forecasts total VDA revenue will grow from $1.6 billion in 2015 to $15.8
billion in 2021.

Machine Learning (ML) is a subset of artificial intelligence and is the enabling technology behind
the rapidly growing field of predictive analytics. Machine learning uses sophisticated algorithms
that allow computers to recognize patterns from current and historical data, learn from those
patterns and then make predictions about future outcomes.

1

2

Historical
Data

New Data

Predictive
Algorithms

Model

Model

Predictions

For example, those outcomes might be behaviors a customer is likely to exhibit during a shopping
experience or anticipate possible changes in the stock market.

Predictive analytics help business leaders to understand and predict possible future occurrences
by analyzing the past.

Internet-based applications of machine learning are becoming commonplace –events that appear
in your Facebook feed, product recommendations made by Amazon, and movie suggestions
presented in Netflix – they all make predictions based on data patterns analyzed by machine
learning algorithms.

Predictive analytics has become a high-growth market opportunity. According to Stratistics MRC,
the Global Predictive Analytics market is expected to grow from $3.89 billion in 2016 to reach
$14.95 billion by 2023 with a CAGR of 21.2%. Fueling this rapid growth of machine learning and
predictive analytics are a multitude of business applications that cross virtually every industry
sector.

Here are a few examples of machine learning in action:

Recommendations Engine: Suggestions to buyers for related products during the shopping and
purchasing process to cross-sell and upsell the value of transactions.

Fraud Detection: Looking for patterns and behaviors that serve as markers for criminal or
fraudulent behavior during the operation of online transactions.

Personalized Marketing: Segmenting and targeting marketing campaigns to match high-value
buyers with high-probability purchases based on historical and demographic data analysis.

Operational Efficiency: The use of predictive models to forecast inventory levels and manage
enterprise resources based on historical operating data.

Dynamic Pricing: Setting the optimum price levels for products and services by analyzing
changing market conditions and consumer demand (e.g., airline ticket and hotel occupancy).

Risk Reduction: Using credit scores to assess the likelihood of defaulting on a purchase, evaluating
the risk of insurance claims, or predicting the outcome of a collections process.

Health Care Applications: Using machine learning to predict the likelihood that patients will
develop a chronic disease or how they will respond to a potential treatment plan.

Insurance Applications: Improve the process of underwriting, pricing, preventing fraudulent claims
and optimizing marketing programs targeting business or consumer segments.

Predictive Maintenance: The use of machine learning and vehicle data to help predict which
components might fail and recommend preventative actions.

MEETING THE TEST DATA CHALLENGE FOR
AI AND ML
When developers and data science practitioners think about new applications for AI, ML and
predictive analytics, they often think the bulk of the work will be in the development of the
algorithms and how to code them. However, the biggest challenge is often on provisioning the
data used to train, validate and test the model for accuracy and robustness. When perfecting a
new algorithm for AI and ML applications, it helps to remember this simple rule of thumb:

The Accuracy of Algorithms used for AI and ML = High Quality Training and Test Data at Scale

How much training data is enough? To answer that question, simply ask yourself how accurate the
results must be. The more data used to train and test the model, the better the learning process
and the higher the accuracy of the results.

The greater the volume and variety of training data used, the more accurate and robust the model
for predicting future outcomes will be. The challenge is this: How to provision a high volume of
high-quality training data without spending an enormous amount of time collecting, labeling,
classifying, cleaning, pruning, normalizing, and formatting the data with the help of domain
experts who understand the data requirements.

Also, important to remember is the need for 3 different kinds of data during the development
process: One dataset is needed to train the model, one dataset to validate the model and one
dataset to test the model.

DATA REQUIREMENTS FOR ARTIFICIAL
INTELLIGENCE AND MACHINE LEARNING
Training Dataset: The sample of data used to train and evolve the accuracy of the model.

Validation Dataset: The sample of data used to provide an unbiased evaluation of the model.

Test Dataset: The sample of data used to provide a final test of the model prior to release.

These 3 datasets must be different to ensure the integrity of the model and how it will perform
in real-world applications scenarios. That’s where GenRocket’s ability to generate high-volumes
of data based on a predefined data model, data attributes and patterns of data variation is a
perfect match for AI and ML application development. Once the domain expert specifies the
data requirements, GenRocket’s real-time synthetic test data engine generates controlled and
conditioned data at the rate of 10,000 rows per second. This allows developers and testers to
create very large datasets on-demand for the separate purposes of training, validating and testing
a machine learning application.

1. COLLECT
DATA

2. PREPARE
DATA

4. TRAIN
DATA

5. TEST AND
VALIDATE

MODEL

6. DEPLOY
MODEL

3. SPLIT DATA

VALIDATION SET

ITERATE

TRAINING SET

THE TECHNICAL CHALLENGE

THE GENROCKET SOLUTION

•	 A global services organization developing a new Artificial Intelligence application needed a
large dataset of customer data with given pattern of data to train the system.

•	 While there were many, many use cases, one use case example was where GenRocket
generated 10 million rows of customer data, with a given pattern of:

•	 20% of the Customer Names should have either Jr / Sr. (60%) or Mr / Mrs (40%)
with same customer details like address, but different Phone number and Unique
Identification Number.

•	 The unique identification number for each customer should have a unique
alphanumeric character consisting of: <2 letters> <2 digits> <2 digits> <2 digits> <1
letter> Eg. AB 12 34 56 C

•	 Generating data with complex business logic can be done easily with GenRocket by
breaking it down into simple concerns.

•	 Linked Generators were used to design complex patterns of data where the percentage
of data generated was controlled from multiple lists by using Generators called the
WaitAmountGen and WaitAmountReferenceGen; these Generators referenced another
Domain Attribute’s generated value.

•	 Linked Generators is a powerful GenRocket feature because linked Generators are able
to directly reference each other within an Attribute as opposed to indirectly accessing
another Domain’s Attribute to get its Generated value. Thus, linking Generators to each
other within an Attribute provides the ability to generate complex conditioned data without
the necessity of having to access another Attribute’s generated value. This also means that
Attributes may reference other Attributes that generate complex data via linked Generators,
thus yielding even more complex, conditioned data.

SETUP
•	 A New Domain was created using the New Domain option in the GenRocket web app and

the appropriate Generators were added to each Attribute.

•	 The following image shows how the Customer name was Generated using Linked
Generators.

•	 For Creating the Names with the given condition, an additional Attribute was created with
the MultiWeightGen Generator, which assigned the value ‘1’ 80% of the time and the value
‘2’ 20% of the time. This was to ensure that 80% of customer data had the condition of the
different first name, last name, address, city, zip code phone number and unique id and 20%
of customer data had the condition of the same second name, address, city and zip code.

•	 By using Linked Generators the patterns and percentages of data generated from
multiple lists were controlled and conditioned by referencing the MultiWeightGen
Generator’s generated value. The following image shows the parameters set in the
WaitAmountReferenceGen Generator for generating First name with Jr / Sr. (60%) and Mr /
Mrs (40%)

•	 To ensure the same value was repeated for the data being generated for all the Attributes, a
linked WaitAmountGen Generator was added and referenced to the value generated by the
MultiWeightGen Generator. The following image shows the AddressGen being referenced
to the MultiWeightGen for the waitAmount. This process was repeated for second name,
address, city and zip code.

•	 Unique Identification Numbers like different countries’ identification numbers were
generated by using the StringRegexGen Generator. The following image shows a sample of
data generated by using StringRegexGen by converting the given condition <2 letters> <2
digits> <2 digits> <2 digits> <1 letter> to a regex [A-Z]{2} \d{2} \d{2} \d{2} [A-Z]

•	 The Unique Identification Number was created by simply using StringRegexGen and adding
the regex value in the regex parameter. The following image shows that the regex value was
added to the regex parameter in the StringRegexGen.

•	 The image below shows preview data generated in the GenRocket web app matching the
required data criteria.

LARGE VOLUME DATA GENERATION
•	 Standard GenRocket data generation is between 10,000 to 15,000 rows of test data per

second.

•	 For the use case 10 millions rows of data was taking over 16 minutes so the decision was
made to use the GenRocket Partition Engine to speed up data generation.

•	 To generate the large volumes of data in delimeted file format using the Partition Engine, the
DelimitedPartitionReceiver was used. This Receiver outputs data in a delimited file format
to one or more files parsed over multiple instances via the GenRocket Partition Engine. This
allowed for huge amounts of data to be generated, in parallel, quickly. The generated files
were then merged together into a single file using the PartitionFileMergeReceiver.

•	 In the DelimitedPartitionReceiver Parameters tab, the client defined the output directory
in which the generated data was to be stored, the number of records generated per
file and the number of files in each directory. The following image shows how the
DelimitedPartitionReceiver parameters was set up for this use case.

•	 After creating a new Scenario and downloading the scenario to a local machine, the
GenRocket Advanced REST Client was run to pass the parameters to the Partition Engine
and 10 GenRocket instances were launched.

•	 The GenRocket Partition Engine, working with DelimitedPartitionReceiver automatically
created a directory structure to store the generated data and each of the 10 partitions
stored 1 million rows of data.

•	 Below you can see a sample of the data generated that met the use case specifications. And
16 minutes of data generation were reduced to 3 minutes and 13 seconds for 10 million rows
of data.

•	 Note: The Partition Engine can be used to generate hundreds of millions to billions of rows
of data in minutes.

IMPACT
•	 By using various combinations of Linked Generators, the customer was able to design and

model data sets for training and testing of an Artificial Intelligence / Machine Learning
application.

•	 GenRocket generated 10 million rows of conditioned training data in a little over 3 minutes.

•	 This solution greatly reduced the time and effort of creating unique data sets that were
useful for the customer use case at a much lower cost.

If you would like to know more about GenRocket’s Test
Data Generation platform and our industry solutions,
please visit our website at www.genrocket.com.

